If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7s^2+19s+10=0
a = 7; b = 19; c = +10;
Δ = b2-4ac
Δ = 192-4·7·10
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-9}{2*7}=\frac{-28}{14} =-2 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+9}{2*7}=\frac{-10}{14} =-5/7 $
| 64*4/a=44 | | 3/8n=15 | | 2z÷9+1=8 | | z/7=7=4 | | 2(x+3)=4(x-2 | | u-8+u=16 | | (8n)=32 | | 200+12*a=644 | | 4.6/2.5=6.8/x | | x*(x+4)=x^2+8 | | 5p+8=3p+12 | | 7n^2+30n+8=0 | | 11=w/9+7 | | 2x^2-5,5x+3=0 | | 8x-(3x+28)=2 | | (8x^2)-17x-68=0 | | 5(5x+4)=46 | | 11x-3x+87=11x+57 | | 53(4x−5)=4x−13 | | 13=s/3–12 | | 60-y=261 | | 4x+8-4/2=46 | | 13j-1=(4j-7)/6 | | 3x-10(x=2)=13-7x | | 5^(x+1)+5^x=750 | | 2n=5×4 | | -n-3=2 | | 3x^2+441=432 | | (w+5)^2+3=47 | | 13j-1=4j-7/6 | | -8+-3w=-17 | | 4x-67=2x-13 |